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Abstract

Is it possible to obtain an objective and quantifiable measure of
risk backed up by choices made by some specific groups of rational
investors? To answer this question, in this paper we establish some
behavior foundations for various types of VaR models, including VaR
and conditional-VaR, as measures of downside risk. Though supported
to some extent with unanimous choices by some specific groups of ex-
pected or non-expected utility investors, VaRs as profiles of risk mea-
sures at various levels of risk tolerance are not quantifiable – they
can only provide partial and incomplete risk assessments for risky
prospects.
Also included in our discussion are the relevant VaRs and several

alternative risk measures for investors; these alternatives use some-
what weaker assumptions about risk-averse behavior by incorporating
a mean-preserving-spread. For this latter group of investors, we pro-
vide arguments for and against the standard deviation vs. VaR and
conditional VaRs as objective and quantifiable measures of risk in the
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1 Introduction

No investors or portfolio managers will argue with the idea that downside
risk is a major cause of stress and a factor to be taken into consideration
in measuring financial risks. In the classical mean-variance (MV) context of
Markowitz (1952), the variance or standard deviation is adopted to measure
the risk exposure of financial assets and portfolios of financial assets. How-
ever, these measures fail to capture the downside risk of most risky prospects,
particularly when the random payoffs are not normally distributed. To cir-
cumvent this problem, academics have proposed several measures. Among
them, the most commonly used measures are the Value-at-Risk (VaR) and
the conditional-VaR, or simply, C-VaR.1 Jorion (2000) and Alexander and
Baptista (2002, 2004) are advocates of the former while Rockafellar and
Uryasev (2000, 2002) are promoters of the latter. Since J.P. Morgan adopted
VaR in its RiskMetrics System, both VaR and C-VaR have become standard
instruments for measuring risk in portfolio management.

In this paper, our objective is to provide a decision-theoretical foundation
for VaR and conditional-VaR, and to examine the relevance of VaR and
conditional-VaR to choices made by rational investors.2 For example, taking
two risk prospects with random payoffs X and Y , respectively, suppose
X and Y involve the same level of initial investment, and suppose X has
a smaller VaR or C-VaR than Y at various levels of risk tolerance. The
questions we ask are:

Problem

(i) Would rational investors or a specific group of rational investors prefer
X to Y ?

(ii) Or the converse, if rational investors or a specific group of rational
investors prefer X to Y , do they regard Y as being riskier than X
based on the criterion of VaR?

1As first noted by Acerbi and Tasche (2002), there are various ways to define VaR and
conditional VaR when random payoffs are with discontinuous c.d.f.s. The notions of VaR
and conditional VaR proposed in this paper can be expressed by making use of the left-
rather than the right-continuously inverse function of the c.d.f. We provide arguments in
support of this treatment (see Section 4.1).

2Unless specified otherwise, in this paper, the notion of a rational investor refers to an
expected-utility investor whose behavior under risk fulfills the von Neumann and Morgen-
stern (1944) axioms even though much of the analysis developed in this paper also applies
to investors with non-expected utility functions.
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Affirmative answers to these sorts of questions are critical in establishing
VaR and C-VaR as objective risk measures. On the one hand, for practical
implementation, it is always desirable to treat risk objectively, and it is
particularly desirable to obtain a quantifiable risk measure.3 Both VaRs
and the standard deviation alike, which do not rely on investors’ preferences
and their risk attitudes, are regarded as objective measures.

On the other hand, one may argue that the assessment of risk is a sub-
jective matter because people with different risk attitudes and financial sta-
tus may reach different assessments of the risk involved in a common risky
prospect. Also, though it is not difficult to obtain a quantifiable risk assess-
ment (e.g., risk premium) at an individual level, it is difficult to imagine
that a group of investors with possibly different attitudes toward risk will
come up with a common figure with respect to risk assessment.

Thus, the possibility of obtaining an objective and quantifiable risk mea-
sure can only be discussed within a decision-theoretical context. To obtain
an objective and quantifiable risk measure from various subjective risk as-
sessments, there must be unanimous agreement on risk assessments among
some specific groups of investors I. This leads us to define an objective risk
measure as a real-valued function X → ρ (X) over a set of random payoffs
X (involving the same level of initial investment) to be such that, for all
X,Y ∈ X,

ρ (X) ≤ ρ (Y ) if, and only if, all risk-averse investors in I prefer X to Y .

The above definition of a risk measure suggests that when a unanimous
ranking of some risk perspectives is reached among a specific group of in-
vestors, and when such ranking conforms to a pre-specified objective and
quantifiable risk measure, one may say that the underlying objective mea-
sure represents risk assessments made by the group of investors. In this
case, when the choice made is found to be consistent with the specific risk
measure in the above sense, then one may say that “investors’ choice of X
over Y is due to Y being riskier than X as indicated by the risk measure
ρ (·).”

The major difficulty in obtaining an objective and quantifiable measure
from subjective risk assessments lies in the fact that it is not always pos-

3See below for the precise definition of a ‘quantifiable’ risk measure. The VaR or
conditional VaR is quantifiable at any arbitrary given level of risk tolerance, but the
value varies with the level of risk tolerance. So, investors with different levels of risk
tolerance may end up with different risk assessments. In this sense we say that the VaR or
conditional VaR corresponds to a profile of risk measure, which itself does not constitute
a quantifiable measure.
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sible to obtain a unanimous agreement among a specific group of investors
concerning the risk measure (if any) in guiding their choices. We may think
of using a risk premium in the context of Arrow (1970) and Pratt (1964).
As a quantifiable risk measure (for individual investors), the risk premium
varies with investors’ risk attitudes and with their underlying utility func-
tions. Since different investors may end up paying different premiums when
facing a common risk prospect, it is difficult to imagine how these investors
could agree upon a specific common risk measure.

There is another conceptual difficulty encountered when trying to obtain
an objective measure of risk. One may argue that risk assessments are
implicitly or indirectly embedded in the actions taken and choices made
by the investors – it is not always possible to tell from their choices or
actions which risk measures the investors use to assess the risk, let alone if
all investors concerned agree upon a specific common objective risk measure.

Indeed, the message in this paper, to those who wish to obtain an objec-
tive and quantifiable measure of risk, is a negative one. Thus, with respect to
some specific groups of expected-utility investors, we show that it is impos-
sible to obtain an objective and quantifiable risk measure ρ (·) to represent
choices made by the group. Nevertheless, there exist some partial or in-
complete binary relations (in the form of lexicographic utility functions),
referring to VaR and C-VaR at all levels of risk tolerance, to represent in-
vestors’ assessment of risk. For instance, as illustrated below, both VaR and
conditional-VaR criteria (at all levels of risk tolerance) constitute (incom-
plete) risk measures for some specific groups of expected-utility investors.

Stochastic dominance (SD), using different partial orders defined over a
set of risky payoffs, provides a useful criterion for portfolio choice and risk
measurement. Originating from majorization theory (Hardy, Littlewood,
and Pólya, 1934; Marshall and Olkin 1979), stochastic dominance was for-
mally developed by Quirk and Saposnik (1962), Hadar and Russell (1969),
Hanoch and Levy (1969), and Rothschild and Stiglitz (1970). The SD ap-
proach has been regarded as one of the most useful tools for ranking in-
vestment prospects when there is uncertainty (see, for example, Levy 1992).
Similar to a mean-variance criterion, the SD was used long before VaR was
introduced in the late 1980s. The rationale for the stochastic dominance
criterion has been well defined (Rothschild and Stiglitz 1970) as follows:

X dominates Y by the first-order (respectively, second-order)
stochastic dominance if and only if all investors who prefer more
to less (respectively, be risk-averse) would prefer X to Y.

Efforts to find an (objective) risk measure consistent with the SD crite-
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rion have been made in the literature. For instance, Ogryczak and Ruszczyński
(2002) define an objective risk measure r to be consistent with SSD by

X dominate Y by SSD ⇒ E [X] ≥ E [Y ] and rX ≤ rY .

Note that a risk measure r that is consistent with SSD in the sense of
Ogryczak and Ruszczyński (2002) may not provide a unanimous assessment
of risk among risk-averse expected-utility investors. In fact, there are many
risk measures that are consistent with SSD and choices made by risk-averse
expected-utility investors in the sense of Ogryczak and Ruszczyński (2002),
but none of these are ‘consistent’ according to our definition. To put it
another way, even if X is considered less risky than Y in the sense of E [X] ≥
E [Y ] and rX ≤ rY , it is always possible to find expected-utility investors
who strictly prefer Y to X. For that reason we say that the notion of
‘consistency’ adopted in this paper is stronger than the notion of a ‘consistent
risk measure’ introduced by Ogryczak and Ruszczyński (2002).

Thus, this paper’s main contribution is to establish some logical connec-
tions between these two seemingly very different investment criteria: one
concerned with risk exposure, and the other concerned with stochastic dom-
inance. As the latter is known to be equivalent to unanimous choices made
by expected-utility investors, it is interesting to note that the VaR criterion,
as a profile of quantitative measures, is equivalent to the first-order sto-
chastic dominance (FSD). This finding was first reported in Ogryczak and
Ruszczyński (2002, Remark 2). In this paper, we also propose two different
notions of a conditional VaR, namely, C-VaR and c*-VaR. The c*-VaR, as a
profile of downside risk measures at various levels of risk tolerance, is shown
to be equivalent to the second-order stochastic dominance (SSD). These add
to the literature by establishing several useful, logical relationships among
C-VaR, SSD, and choices made by risk-averse expected-utility investors.

The message resulting from these exercises is clear – it is impossible to
obtain an objective and quantifiable risk measure that fully reflects choices
made by the class of expected-utility investors. The implication of this for
portfolio risk management and risk measurement is evident – one must
think twice before seeking quantifiable risk measures as a guide to risk
management and risk measurement. Risk assessment is best regarded as
a subjective matter, and we shall leave it to individual investors and fund
managers to decide for themselves which risk measure is most sensible in
guiding their choices. A sensible risk measure is one that best reflects in-
vestors’ risk attitudes and their preferences.

Having said that, as a minor point, we need to point out that the con-
ditional VaR measures, namely, C-VaR and c*-VaR, proposed in this pa-
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per, differ from those in the existing literature, for example, the TVaR of
Ogryczak and Ruszczyński (2002), and the AV@R of Leitner (2005), among
others. Ogryczak and Ruszczyński (2002) established the equivalence be-
tween TVaR and the second-order stochastic dominance, and Leitner (2005)
showed that AV@R as a profile of risk measures is equivalent to the SSD
under certain conditions. The C-VaR introduced in this paper is defined as
how much risk is expected to fall below the VaR measure. The VaR can
be expressed alternatively by using the left, rather than the right, continu-
ous inverse c.d.f. Not surprisingly, the C-VaR as a profile of risk measure
may not lead to the same assessment as the SSD criterion, particularly for
random payoffs with discrete supports. In this paper we provide sufficient
conditions under which the C-VaR and SSD are equivalent.

As a separate effort, we raise the issue of the relevance of VaR and
conditional VaR as objective (non-quantifiable) risk measures for investors
whose behavior may not necessarily conform to von Neumann and Morgen-
stern’s (1944) expected utility axiom, not even to the broader class of SSD-
conforming non-expected utility functions.4 Several thought experiments
are conducted in exploring the extent to which VaR, C-VaR, or c*-VaR
could serve as sensible risk measures. Along this line, we have developed a
linkage between choices made by the class of investors who display mean-
preserving-spread (MPS) risk aversion and the corresponding risk measure.5

According to Boyle and Ma (2004), SSD implies but is not implied by
MPS. Also keeping in mind that SSD corresponds to unanimous choices
made by risk-averse expected-utility investors (Rothschild and Stiglitz 1970),
the MPS and SSD as different investment criteria would, in general, lead to
different assessments of financial risk. But, as illustrated in Section 4.3 of
this paper, we find that the standard deviation, as a measure of risk, will
never contradict choices made by MPS-risk-averse investors.

Our assertion of the logical connection between the standard deviation
and choices made by MPS-risk-averse investors is built on an earlier obser-
vation made by Boyle and Ma (2004) in the context of portfolio choices.
They show that all MPS-risk-averse investors would optimally invest along
Markowitz’s classical efficient frontier. Accordingly, we shall not be able to
construct a portfolio that achieves the expected return at the optimal level,

4A utility function u on X is said to be ‘SSD- conforming’ if u (X) ≥ u (Y ) whenever
X dominates Y by the SSD.

5The notions of MPS and strong-MPS are defined below in Section 4.3. The MPS refers
to that of Boyle and Ma (2004), while the strong-MPS refers to the ‘mean-preserving-
spread’ adopted by Rothschild and Stiglitz (1970). The strong MPS implies MPS but the
converse does not hold.
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even though it has a smaller ‘risk’ when measured by the standard devia-
tion. In this sense we may say that the standard deviation is an objective
measure consistent with the MPS-risk-averse behavior assumption.

The remainder of the paper is organized as follows. In Section 2, we in-
troduce and study three objective measures of downside risk associated with
risky payoffs. These are VaR, conditional-VaR, and a modified conditional-
VaR. The last two risk measures are respectively denoted by C-VaR and
c*-VaR. The decision-theoretical foundations of these objective measures of
risk and their useful links with the notions of stochastic dominance are pro-
vided in Section 3. We will show that VaR is equivalent to the first-order sto-
chastic dominance, while c*-VaR and C-VaR are linked to the second-order
stochastic dominance. Section 4 contains a discussion of the advantages and
limitations of VaR and C-VaR as risk measures, and their comparison with
some alternative (existing or new) risk measures such as the standard devi-
ation. Section 5 summarizes the paper. Some of the mathematical proofs
are summarized in the Appendix.

2 Various VaR Models

In this section, we introduce various types of VaR risk measures, includ-
ing VaR, C-VaR, and c*-VaR, and develop some basic properties of these
measures.

2.1 VaR and C-VaR

Roughly speaking, VaR and C-VaR introduced below constitute two specific
ways to measure the potential loss associated with a risky position on a pre-
defined horizon, and the chance of such a loss is pre-specified at an arbitrary
level of risk tolerance measured by the tail probability α ∈ (0, 1]. Precisely,

Definition 1 For any given α ∈ (0, 1],

1. the value at risk, denoted by VaR(α), for a risky project with random
payoff W is defined as the ‘critical value’ at which the probability of
incurring a loss of no less than VaR(α) is at least α. That is,

VaR (α) = sup {u : Pr {W ≤W0 − u} ≥ α} , ∀α ∈ (0, 1] (1)

where W0 is the initial investment in the risky project.
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2. The conditional-VaR, or simply C-VaR, is defined accordingly by set-
ting

C-VaR (α) ∆
= E [W0 −W |W0 −W ≥ VaR (α)] , ∀α ∈ (0, 1]. (2)

Let FW (x)
∆
= Pr {W ≤ x} , x ∈ R, be the cumulative distribution func-

tion (c.d.f.) for W . The c.d.f. FW (·) is known to be right-continuous and
monotonically increasing. We may also introduce the left- and the right-
continuously inverse functions, ζ−W (α) and ζ+W (α), of the c.d.f. with

ζ−W (α)
∆
= inf {x : FW (x) ≥ α} (3)

ζ+W (α)
∆
= inf {x : FW (x) > α} (4)

∀α ∈ (0, 1].6 The properties of left- and right-continuously inverse c.d.f.
functions, ζ−W (α) and ζ+W (α), are summarized in the Appendix.

Various versions of VaRs and conditional VaRs could be introduced.
Acerbi and Tasche (2002) provide a list of different expected shortfalls that
link closely with the VaR and C-VaR introduced in our paper. But spe-
cial care must be taken concerning the precise mathematical definition with
respect to any specific measure of risk. For instance, we could use either
a left- or right-continuously inverse function to define VaR. For atomless
r.v.s with continuum supports, the two inverse functions coincide and will
thus result in the same measure of value-at-risk. But for general r.v.s with
possibly discrete supports, these two inverse functions will result in different
assessments of value-at-risk. The same could be said with respect to C-VaR.

Furthermore, the notion of CVaR introduced by Uryasev (2000) and
Pflug (2000), which is re-formulated in Acerbi and Tasche (2002, Definition
2.5), differs from our C-VaR. The two notions of conditional VaR coincide
when the random payoffs are atomless with continuum supports. But the
CVaR differs from the C-VaR for discrete random payoffs. The case with dis-
crete supports is of practical value for empirical implementation. The same
can be said with respect to the difference between the notion of the ‘ex-
pected shortfalls’ (ES) of Acerbi and Tasche (2002) and the C-VaR adopted
in this paper. The former is equivalent to the CVaR, according to Acerbi
and Tasche (2002, Corollary 4.3).

Incidently, in a recent paper by Leitner (2005), the right-continuously
inverse function is used to define the so-called ‘average value at risk,’ or,

6The right-continuous function ζ+W admits an alternative expression as ζ+W (α) =
sup {x : FW (x) ≤ α}.
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using his notation, AV@R. For general r.v.s with discrete supports, the
AV@R differs from the C-VaR considered in this paper. In Section 4.1
below, we provide a justification for using the left- rather than the right-
continuously inverse c.d.f. to define value-at-risk and conditional value-at-
risk.

Keeping in mind the remarks above, we could readily express the VaR
and the C-VaR by making use of the left-continuously inverse function
ζ−W (·):

Proposition 1 Consider an integrable random payoffW with initial invest-
ment W0. We have:

1. VaR(α) =W0 − ζ−W (α) ,∀α ∈ (0, 1].

2. C-VaR(α) = gα (VaR (α)) ,∀α ∈ (0, 1], where x→ gα (x) is defined by
setting

gα (x)
∆
= x+

1

FW
¡
ζ−W (α)

¢ Z W0−x

−∞
FW (t) dt. (5)

3. C-VaR(α) = minx∈R gα (x) and VaR(α) = max {argminx∈R gα (x)}.

Proof. The first statement follows by the definitions of the VaR and the
left-continuously inverse c.d.f., we have:

VaR (α) = sup {u : Pr {W ≤W0 − u} ≥ α}
= W0 − inf {x : Pr {W ≤ x} ≥ α}
= W0 − inf {x : FW (x) ≥ α}
= W0 − ζ−W (α) .

To prove statement 2 of the proposition, we have, for all α ∈ (0, 1],

C-VaR (α)

= VaR (α) +E [W0 −W −VaR (α) |W0 −W ≥ VaR (α)]

= VaR (α) +
E
£
(W0 −VaR (α)−W )+

¤
FW (W0 −VaR (α))

= VaR (α) +
1

FW
¡
ζ−W (α)

¢ Z W0−VaR(α)

−∞
FW (x) dx

= gα (VaR (α))

in which the third equality is obtained by setting VaR(α) =W0 − ζ−W (α).
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Now, we proceed to prove the third statement of the proposition. First,
for all x ≤ VaR(α) = W0 − ζ−W (α), by monotonicity of the c.d.f., we have:
FW (W0 − x) ≥ FW

¡
ζ−W (α)

¢
. This, in turn, implies

g0α (x) = 1−
FW (W0 − x)

FW
¡
ζ−W (α)

¢ ≤ 0 (6)

for all x ≤VaR(α). Second, for all x > VaR(α), by the definition of VaR,
we have:

x > VaR (α)⇔ x > sup {u : FW (W0 − u) ≥ α} .
Since x /∈ {u : FW (W0 − u) ≥ α}, we have FW (W0 − x) < α. This, together
with Lemma 1-(a), implies

FW (W0 − x) < α ≤ FW
¡
ζ−W (α)

¢
.

So, we have:
g0α (x) > 0 for all x > VaR (α) . (7)

Combining the two inequalities in (6) and (7) for g0α (·), one could easily
show that gα (·) is monotonically decreasing from the left of VaR(α) and is
strictly increasing to the right of VaR(α). So, we conclude that VaR(α) =
max {argminx∈R gα (x)}. This, together with C-VaR(α) = gα (VaR (α)),
yields C-VaR(α) = minx∈R gα (x) as desired.

The following two remarks are in order here:

Remark 1 We may express C-VaR(α) explicitly in terms of the left-continuously
inverse distribution function such that

C-VaR (α) =W0 −
1

FW
¡
ζ−W (α)

¢ Z ζ−W (α)

−∞
xdFW (x)

for all α ∈ (0, 1]. In particular, when the random payoff W is atomless with
continuum support, we have FW

¡
ζ−W (α)

¢
= α, and in this situation the

C-VaR(α) admits the following simple expression:

C-VaR (α) = W0 −
1

α

Z ζ−W (α)

−∞
xdFW (x)

= W0 −
1

α

Z α

0
ζ−W (u) du

for all ∀α ∈ (0, 1]. So, for this particular special case of atomless r.v.s
with continuum supports, the C-VaR reduces to Leitner’s (2005) notion of
AV@R.
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Remark 2 As another special case, we consider random payoff W with
finite or countable infinite support, that is,

W = {p1, x1; · · · ; pn, xn; · · · }

with x1 < · · · < xn · · · . Let C0 = 0 and Cn =
Pn

i=1 pi, n = 1, 2, · · · , be the
corresponding cumulative probabilities. It holds true that

C-VaR (α) = W0 −
1

Cn+1

n+1X
i=1

pixi

∀α ∈ (Cn, Cn+1], n = 0, 1, · · · .

2.2 c*-VaR

This c*-VaR defined below as a measure of downside risk is arbitrary. Nev-
ertheless, it coincides with the C-VaR for random payoffs with continuum
supports. Moreover, in contrast to VaR and C-VaR, as illustrated below
in Remark 5, the c*-VaR defined as a real function of risk tolerance α is
continuous. In other words, c*-VaR as a measure of downside risk has the
following desirable property: a small change in the level of risk tolerance will
not cause a dramatic change in the assessment of downside risk. Indeed, it is
difficult to imagine a risk measure function that would lead fund managers
to act with ease when α = 5% but be alarmed when α = 4.999%!

Definition 2 For any integrable random payoff W , we define c*-VaR as a
measure of downside risk by setting

c*-VaR (α) ∆
= VaR (α) +

1

α

Z W0−VaR(α)

−∞
FW (x) dx (8)

for all α ∈ (0, 1].

General relationships among VaR, C-VaR and c*-VaR could be readily
established and are summarized by the proposition below.

Proposition 2 LetW be absolutely integrable. For all α ∈ (0, 1] and x ∈ R,
we define x→ hα (x) by setting

hα (x)
∆
= x+

1

α

Z W0−x

−∞
FW (t) dt. (9)

Then, we have:

11



(a) VaR(α) = max {argminx∈R hα (x)} and c*-VaR(α) = minx∈R hα (x) ;

(b) for all α ∈ (0, 1], C-VaR(α) ≤ c*-VaR(α);

(c) if W is with continuum support and atomless, then c*-VaR(α) = C-
VaR(α); and

(d) if W is with discrete support, then, for all α ∈ (Cn, Cn+1], n = 0, 1, · · · ,
it holds true that

c*-VaR (α) =W0 − xn+1 +
1

α

nX
i=1

Ci (xi+1 − xi) . (10)

Proof. To prove (a), we first consider x ≤ VaR(α) = W0 − ζ−W (α). By
Lemma 1-(a), we have FW (W0 − x) ≥ FW

¡
ζ−W (α)

¢
≥ α. With h0α (x) =

1− FW (W0−x)
α , x ∈ R, we have h0α (x) ≤ 0 for all x ≤ VaR(α). On the other

hand, by the definition of VaR, we have:

x > VaR (α)⇔ x > sup {u : FW (W0 − u) ≥ α} .

Since x /∈ {u : FW (W0 − u) ≥ α}, we have FW (W0 − x) < α or, equiva-
lently, h0α (x) > 0 for all x >VaR(α). Combining the two inequalities for
h0α (·), we conclude that hα (·) is monotonically decreasing from the left of
VaR(α) and is strictly increasing to the right of VaR(α). This enables us
to conclude that VaR(α) = max {argminx∈R hα (x)}. By the definition of
c*-VaR(α), we obtain c*-VaR(α) = minx∈R hα (x).

For (b), by Lemma 1-(a), gα (x) ≤ hα (x) for all α ∈ (0, 1] and x ∈ R.
Combining Proposition 1 and statement (a) proved above, we obtain

C-VaR (α) = min
x∈R

gα (x) ≤ min
x∈R

hα (x) = c*-VaR (α) .

For (c), when the random payoff W is with continuum support and
atomless, we have FX

¡
ζ−W (α)

¢
≡ α and gα (·) = hα (·) on (0, 1]. So, c*-VaR

coincides with C-VaR.
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For (d), when W has discrete support, the expression for the c*-VaR is
obtained from (8) with ζ−W (α) = Cn+1 for α ∈ (Cn, Cn+1] and that

c*-VaR (α)

= W0 − xn+1 +
1

α

nX
i=1

Ci (xi+1 − xi)

≥ W0 − xn+1 +
1

Cn+1

nX
i=1

Ci (xi+1 − xi)

= W0 −
1

Cn+1

n+1X
i=1

pixi

= C-VaR (α)

with equality only at α = Cn+1.

Remark 3 Proposition 2-(a) provides a natural venue for finding VaR and
c*-VaR by solving a static optimization problem. This, together with Propo-
sition 1, enables one to compute VaR and C-VaR when analytic expressions
are not readily available (for general distribution functions). One may follow
a two-step procedure to compute C-VaR: In the first step, one may compute
VaR by setting

VaR = max
½
argmin

x∈R

½
x+

1

α

Z W0−x

−∞
FW (t) dt

¾¾
.

An approximation of VaR as the solution to the optimization problem could
be obtained by following various numerical methods. With ζ−W = W0−VaR,
in the second stage, we obtain (or approximation of) C-VaR by setting

C-VaR = VaR+
1

FW (W0 −VaR)

Z W0−VaR

−∞
FW (t) dt.

Remark 4 Proposition 2-(c) suggests that for random payoffs with dis-
crete supports, for all α ∈ (0, 1], c*-VaR(α) must be strictly greater than
C-VaR(α) except for α = Cn, n = 1, 2, · · · , at which it holds true that c*-
VaR(Cn) = C-VaR(Cn).

Remark 5 As a separate observation, the function α → c*-VaR(α) must
be continuous on (0, 1]. The assertion obviously holds true for random pay-
offs with continuum supports. To verify the validity of the assertion for
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discrete random payoffs, notice that α→ c*-VaR(α) is piecewise continuous
on (Cn, Cn+1]; moreover, at the boundary points, it is easy to see that

lim
α→Cn

c*-VaR (α) = c*-VaR (Cn)

for all n = 1, 2, · · · . We may thus conclude the continuity of the map α→c*-
VaR(α) for all arbitrary random payoffs W .

3 Value-at-Risk and Stochastic Dominance

In this section, we show how the first-order and second-order stochastic
dominances are linked to VaR, C-VaR, and c*-VaR as measures of down-
side risk. Recall that X is said to first-order stochastically dominate Y if
FX (x) ≤ FY (x) for all x ∈ R; and X is said to second-order stochastically
dominate Y if Z x

−∞
{FX (t)− FY (t)} dt ≤ 0 for all x ∈ R.

The first-order stochastic dominance is known for its equivalence for unani-
mous choices made by investors with monotonic expected utility functions,
while the second-order stochastic dominance relationship is known for its
equivalence for unanimous choices made by risk-averse expected-utility in-

vestors.7 For notational simplicity, we writeX
FSD
º Y andX

SSD
º Y whenever

X dominates Y according to FSD and SSD, respectively.

3.1 FSD and VaRs

Observe that if X first-order stochastically dominates Y, then X will involve
less risk than Y in the sense that it has a smaller probability to receive a
payoff below any pre-specified critical value x. Therefore, X must be asso-
ciated with a smaller VaR than Y if both X and Y require the same initial
investment W0. One could easily show that the converse of this observation
is also true. We may thus put this formally as follows:

Theorem 1 For all X and Y , we have

X
FSD
º Y ⇔ VaRX (α) ≤ VaRY (α) , ∀α ∈ (0, 1].

7Here, we assume that the improper integral in defining the SSD relationship takes
finite values. Readers are referred to Wong and Ma (2006) for the precise conditions on
the c.d.f.s of the random variables to ensure the validity of this last statement concerning
the equivalence between SSD and choices by risk-averse expected-utility investors.
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Proof. Let X
FSD
º Y. For all α ∈ (0, 1], we have:

α ≤ FX
¡
ζ−X (α)

¢
≤ FY

¡
ζ−X (α)

¢
,

where the first inequality follows by Lemma 1-(a), and the second inequality

follows by the assumption of X
FSD
º Y . By the monotonicity of ζ−Y (·), we

obtain
ζ−Y (α) ≤ ζ−Y

¡
FY
¡
ζ−X (α)

¢¢
≤ ζ−X (α)

where the second inequality is obtained by Lemma 1-(b). This above in-
equality is equivalent to VaRX (α) ≤ VaRY (α) as desired.

Conversely, let VaRX (α) ≤ VaRY (α) for all α ∈ (0, 1]. Note that for
all x ∈ R s.t. FY (x) > 0, the value at risk for X at α = FX (x) is given by
VaRX (FX (x)) =W0 − ζ−X (FX (x)) . We have

x ≥ ζ−X (FX (x)) ≥ ζ−Y (FX (x)) ,

where the first inequality is given by Lemma 1-(b). By Lemma 1-(a) and by
the monotonicity of FX (·), we obtain

FY (x) ≥ FY
¡
ζ−Y (FX (x))

¢
≥ FX (x) .

Since this is true for arbitrary x ∈ R in the support of Y , we thus conclude
that X

FSD
º Y .

Remark 6 The observation on the equivalence between VaR and FSD as
stated in Theorem 1 is fairly intuitive and is documented in Ogryzak and
Ruszczýnski (2002, Remark 2). We nevertheless choose to include this theo-
rem, along with its proof, for the completeness of the exposition and for the
convenience of our readers for future reference.

Remark 7 As another observation, Theorem 1 enables us to establish the
following link between VaR, as a risk measure, and an anonymous choice by
the group of expected-utility investors: For all X and Y , we have

VaRX (α) ≤ VaRY (α) , ∀α ∈ (0, 1]⇔ E [u(X)] ≥ E [u(Y )]

for all bounded and increasing utility functions u ∈ C (R).

From this remark, we observe that all expected-utility investors who
prefer more to less will prefer X to Y whenever Y is assessed to be riskier
than X, according to the VaR criterion. But in order to assess risk between
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X and Y , it has to pass the VaR test at all levels of risk tolerance α. So,
in general, the VaR criterion may not be able to perform the pair-wise risk
assessments for any arbitrary given pair of risky prospects.

In addition to what is stated in Theorem 1, we establish, as follows, a
couple of additional observations on FSD concerning its relationship with
the other two measures of downside risk, namely, the C-VaR and c*-VaR:

Corollary 1 For all X and Y that are absolute integrable, it must hold true
that

1. X
FSD
º Y ⇒ c*-VaRX (α) ≤ c*-VaRY (α) , ∀α ∈ (0, 1].

2. If Y is atomless and has continuum support, then

X
FSD
º Y ⇒ C-VaRX (α) ≤ C-VaRY (α) , ∀α ∈ (0, 1].

Proof. Suppose X
FSD
º Y , that is, FX (x) ≤ FY (x) , ∀x ∈ R. This, together

with Proposition 2, implies that

c*-VaRX (α)

= min
x∈R

½
x+

1

α

Z W0−x

−∞
FX (t) dt

¾
≤ min

x∈R

½
x+

1

α

Z W0−x

−∞
FY (t) dt

¾
= c*-VaRY (α) .

This proves the validity of the first statement.
To see the validity of the second statement, notice that for Y with con-

tinuum support and atomless, it always holds true that FY
¡
ζ−Y (α)

¢
= α.

We have:

C-VaRX (α)

= min
x∈R

(
x+

1

FX
¡
ζ−X (α)

¢ Z W0−x

−∞
FX (t) dt

)

≤ min
x∈R

½
x+

1

α

Z W0−x

−∞
FY (t) dt

¾
= min

x∈R

(
x+

1

FY
¡
ζ−Y (α)

¢ Z W0−x

−∞
FY (t) dt

)
= C-VaRY (α)
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since by Lemma 1-a), FX
¡
ζ−X (α)

¢
≥ α for all α.

So, for atomless random variables with continuum supports, the VaR as
a measure of downside risk is stronger than the C-VaR and c*-VaR. It will
become evident from the subsections below that the converse of the above
two relationships are, in general, not valid.

3.2 SSD and C-VaR

We can further establish the link between SSD and the conditional-VaR as
a measure of risk. To do this, we examine two extreme cases: i) random
payoffs with atomless continuum supports; and ii) random payoffs with finite
or countable infinite supports.

3.2.1 The Case with Continuum Supports

For the case when the random payoffs have continuum supports, we have
the following observation on the relationship between the C-VaR and SSD:

Theorem 2 For all X and Y that have continuum supports and are atom-
less and absolutely integrable, it must hold true that

X
SSD
º Y ⇔ C-VaRX (α) ≤ C-VaRY (α) , ∀α ∈ (0, 1].

Proof. Recall that for any random variable W that has continuum support

and is atomless, we have FW
¡
ζ−W (α)

¢
≡ α. Suppose X

SSD
º Y ; that is,Z x

−∞
{FX (t)− FY (t)} dt ≤ 0, ∀x ∈ R.

With Proposition 1, we have,

C-VaRX (α)

= min
x∈R

½
x+

1

α

Z W0−x

−∞
FX (t) dt

¾
≤ min

x∈R

½
x+

1

α

Z W0−x

−∞
FY (t) dt

¾
= C-VaRY (α)

for all α ∈ (0, 1]. This proves the sufficient part of the theorem.
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To prove the converse, suppose C-VaRX (α) ≤ C-VaRY (α) for all α ∈
(0, 1]. This, together with Proposition 1, implies

VaRX (α) +
1

α

Z W0−VaRX(α)

−∞
FX (t) dt

= min
x∈R

½
x+

1

α

Z W0−x

−∞
FX (t) dt

¾
≤ min

x∈R

½
x+

1

α

Z W0−x

−∞
FY (t) dt

¾
≤ VaRX (α) +

1

α

Z W0−VaRX(α)

−∞
FY (t) dt.

With VaRX (α) =W0 − ζ−X (α), we obtainZ ζ−X(α)

−∞
{FX (t)− FY (t)} dt ≤ 0, ∀α ∈ (0, 1] .

For any arbitrary x ∈ R, we may set α = FX (x) to the above inequality to
obtainR x
−∞ {FX (t)− FY (t)} dt ≤ 0. This enables us to conclude that X

SSD
º Y .

Remark 8 Together with the basic properties of SSD, Theorem 2 enables
us to establish the following link between C-VaR and choices made by risk-
averse expected-utility investors: For all X and Y that have continuum sup-
ports and are atomless and absolutely integrable, it must hold true that

C-VaRX (α) ≤ C-VaRY (α) , ∀α ∈ (0, 1]⇔ E [u(X)] ≥ E [u(Y )]

for all increasing and concave utility functions u ∈ C1 (R) with bounded
first-order derivatives.

Remark 9 The equivalence between SSD and the C-VaR criteria stated in
Theorem 2 is sensible to the distributional assumption on the random pay-
offs. As illustrated below, the equivalence will, in general, break down when
the random payoffs contain atoms, particularly for random payoffs with dis-
crete supports.

3.2.2 The Case with Discrete Supports

For r.v.s X and Y with finite or countable infinite supports that are respec-
tively denoted by {xn}∞n=1 and {yn}

∞
n=1. Here, xn < xn+1 and yn < yn+1
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for n = 1, 2, · · · . Let Cn and Dn, n = 0, 1, 2, · · · , be, respectively, the cor-
responding cumulative probabilities for X and Y with C0 = D0 = 0. We
have:

Theorem 3 For X and Y with finite or countable infinite supports, it must
hold true that

(a) X
SSD
º Y ⇒C-VaRX (Dn) ≤ C-VaRY (Dn) , ∀n = 1, 2, · · · .

(b) C-VaRX (Cn) ≤ C-VaRY (Cn) , ∀n = 1, 2, · · ·⇒ X
SSD
º Y .

Proof. The C-VaR corresponding to the r.v. X is such that, for all α ∈
(Cn, Cn+1],

C-VaRX (α) =W0 − xn+1 +
1

Cn+1

Z xn+1

−∞
FX (t) dt;

that is, the C-VaR is piecewise constant in α. A similar observation holds
true for C-VaRY (α).

Now, to prove (a), suppose X
SSD
º Y , that is,

R x
−∞ {FX (t)− FY (t)} dt ≤

0, ∀t ∈ R, we have

C-VaRX (α)

≤ W0 − ζ−Y (α) +
1

FX
¡
ζ−X (α)

¢ Z ζ−Y (α)

−∞
FX (t) dt

≤ W0 − ζ−Y (α) +
1

FX
¡
ζ−X (α)

¢ Z ζ−Y (α)

−∞
FY (t) dt

≤ W0 − ζ−Y (α) +
1

α

Z ζ−Y (α)

−∞
FY (t) dt

in which, the first inequality follows by applying Proposition 1; the second

inequality follows by using the assumption of X
SSD
º Y ; and the third in-

equality holds true because of Lemma 1-(a). Particularly at α = Dn, we
have Dn = FY

¡
ζ−Y (Dn)

¢
and the above inequality leads to C-VaRX (Dn) ≤

C-VaRY (Dn) which holds true for all n = 1, 2, · · · .
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To prove (b), suppose C-VaRX (α) ≤ C-VaRY (α) at α = FX (xn) = Cn

for all n = 1, 2, · · · , we have:

W0 − xn +
1

Cn

Z xn

−∞
FX (t) dt

≤ C-VaRY (Cn)

≤ W0 − xn +
1

FY
¡
ζ−Y (Cn)

¢ Z xn

−∞
FY (t) dt

≤ W0 − xn +
1

Cn

Z xn

−∞
FY (t) dt

in which, the first inequality is, by assumption, C-VaRX (Cn) ≤ C-VaRY (Cn);
the second inequality holds because of Proposition 1; the third inequality is
obtained from the result of Lemma 1-(a). This yieldsZ xn

−∞
{FX (t)− FY (t)} dt ≤ 0, n = 1, 2, · · · .

With the validity of the inequalities above, we could further show thatZ x

−∞
{FX (t)− FY (t)} dt ≤ 0, ∀x ∈ R;

that is, X
SSD
º Y . In fact, suppose that, to the contrary, there exists x∗ ∈

(xi, xi+1) such that
R x∗
−∞ {FX (t)− FY (t)} dt > 0 and FX (x∗)−FY (x∗) > 0.

With FX (x) ≡ Ci on (xi, xi+1) and with the c.d.f. FY (·) to be monotonically
increasing, we have FX (t)− FY (t) > 0 for all t ∈ (x∗, xi+1). With

R xi+1
−∞ =R x∗

−∞+
R xi+1
x∗ = (+) + (+) > 0, we obtain a contradiction toZ xi+1

−∞
{FX (t)− FY (t)} dt ≤ 0.

As a corollary to Theorem 3, we may state without proof the following
observation:

Corollary 2 For X and Y with finite or countable infinite supports, if Cn =
Dn for all n = 1, 2, · · · , then

X
SSD
º Y ⇔ C-VaRX (α) ≤ C-VaRY (α) , ∀α ∈ (0, 1].
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To sum up, we have shown that, for random payoffs X and Y with

continuum supports, X
SSD
º Y if and only if Y is riskier than X in the sense

that Y has a higher C-VaR than X at all levels of risk tolerance α ∈ (0, 1].
From Theorem 3, we observe that the equivalence breaks down for general
distributions, particularly when the random payoffs have discrete supports.

Since X
SSD
º Y if and only if all risk-averse expected-utility investors who

prefer more to less will unanimously prefer X to Y (see, for example, Wong
and Ma 2006), the C-VaR as an objective measure of downside risk is linked
but not always equivalent to the unanimous choice by risk-averse expected-
utility investors.

3.3 c*-VaR and SSD

As we have learned from the previous subsection, generally speaking, the
equivalence between SSD and C-VaR does not hold in the absolute sense,
particularly for random payoffs with discrete distributions. Nevertheless, by
virtue of the proof of the equivalence between SSD and C-VaR for payoffs
with continuum supports, we can readily establish the following equivalence
relationship between c*-VaR, as a modification to C-VaR, and SSD.

Theorem 4 For all X and Y that are absolutely integrable, it must hold
true that

X
SSD
º Y ⇔ c*-VaRX (α) ≤ c*-VaRY (α) , ∀α ∈ (0, 1].

Proof. The sufficiency proof is the same as the proof of the sufficient part
of Theorem 2. The details are thus omitted.

We proceed with the proof of the necessary part of the theorem. Suppose
c*-VaRX (α) ≤ c*-VaRY (α) for all α ∈ (0, 1], by Proposition 2, we have:

VaRX (α) +
1

α

Z W0−VaRX(α)

−∞
FX (t) dt

= min
x∈R

½
x+

1

α

Z W0−x

−∞
FX (t) dt

¾
≤ min

x∈R

½
x+

1

α

Z W0−x

−∞
FY (t) dt

¾
≤ VaRX (α) +

1

α

Z W0−VaRX(α)

−∞
FY (t) dt;
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that is, with VaRX (α) =W0 − ζ−X (α),Z ζ−X(α)

−∞
{FX (t)− FY (t)} dt ≤ 0, ∀α ∈ (0, 1].

We divide the real line R into three segments:
(a) When x ∈ R is located within the continuum support of X, we may

set α = FX (x) for the above inequality to obtain
R x
−∞ {FX (t)− FY (t)} dt ≤

0;
(b) At all atomic support points x1 < x2 < · · · of X, we may set

α = FX (xn) for the above inequality to obtain
R xn
−∞ {FX (t)− FY (t)} dt ≤ 0

for all n = 1, 2, · · · ;
(c) Let O = (a, b) be a nuclear of X. For all x ∈ (a, b) that contains no

support of X, we could still prove
R x
−∞ {FX (t)− FY (t)} dt ≤ 0.

To prove the last assertion (c), suppose, to the contrary, that there exists
x∗ ∈ (a, b) such that

R x∗
−∞ {FX (t)− FY (t)} dt > 0. With FX (x) ≡ FX (a)

on (a, b) and with the c.d.f. FY (·) to be monotonically increasing, we must
have FX (t) − FY (t) > 0 for all t ∈ [x∗, b). With

R b
−∞ =

R x∗
−∞+

R b
x∗ = (+)

+(+) > 0, we obtain a contradiction to
R b
−∞ {FX (t)− FY (t)} dt ≤ 0 since

b belongs to the support.
Combining (a), (b) and (c) to obtainZ x

−∞
{FX (t)− FY (t)} dt ≤ 0, ∀x ∈ R.

So, we have X
SSD
º Y .

Thus, it is the modified conditional-VaR, c*-VaR, rather than the C-
VaR, that displays equivalence to SSD. A similar result was reported with-
out proof by Leitner (2005, Theorem 2.1) with respect to the equivalence
between the so-called SSD and the so-called AV@R, a result originally dis-
covered by Föllmer and Schied (2002, Theorem 2.58 and remark 4.38). Re-
gardless of the technical treatment and proofs, Leitner made use of the
right-continuously inverse c.d.f. to define AV@R, while in this paper we
adopt the left-continuous c.d.f. to define VaR and the corresponding C-VaR
and c*-VaR. Section 4.1 below offers some justifications for our favoring the
left- rather than the right-continuous inverse to define the VaR along with
the corresponding C-VaR and c*-VaR.8

8Acerbi and Tasche (2002) introduce the notions of lower and upper quantiles, which,
respectively, refer to the left- and the right-continuously inverse c.d.f.s. Their notion of
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Recall that X
SSD
º Y is equivalent to all investors with risk-averse ex-

pected utility, who prefer more to less, would preferX to Y (see, for example,
Wong and Ma 2006). Now, as a corollary to Theorem 4, we can alternatively
say that all investors with monotonic risk-averse expected utility would pre-
fer X to Y whenever Y is riskier than X in the sense that Y has a higher
c*-VaR than X at all levels of risk tolerance. Put formally, we have:

Corollary 3 For all X and Y that are absolutely integrable, we have

c*-VaRX (α) ≤ c*-VaRY (α) , ∀α ∈ (0, 1]⇔ E [u(X)] ≥ E [u(Y )]

for all increasing and concave utility functions u ∈ C1 (R) with bounded
first-order derivatives.

4 Discussion

This section focuses on a general discussion of VaR, C-VaR, and c*-VaR as
risk measures. This goes along with a consideration of some alternative risk
measures with somewhat weaker behavior assumptions relative to those for
VaRs as risk measures.

4.1 Optimistic vs. Conservative VaR

We start with the discussion of the VaR as a measure of downside risk. The
VaR is of critical importance because both C-VaR and c*-VaR as defined
above are derived from the VaR. Without the solid justification for the VaR
defined in Section 1 as a sound measure of downside risk, we would not
be able to recommend that investors use the induced conditional-VaR and
modified conditional-VaR. Indeed, as also pointed out by Acerbi and Tasche
(2002), there is no unique way to define VaR when the random payoffs have
discontinuous c.d.f.s. The definition of VaR is particularly relevant when
the random payoffs have discrete supports.

First, it is not difficult to show that the VaR(·) defined in Section 1
satisfies the following desirable property:

FW (W0 − x) < α for all α ∈ (0, 1] and x > VaR (α) ; (11)

an ‘expected shortfall’ resembles but differs from our conditional VaR. Acerbi and Tasche
(2002) concern the coherence (similar to Artzner et al. 1999) of using various quantiles
in defining the expected shortfall. No results like our Theorem 4 were reported in their
paper.
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that is, the value at risk so defined could indeed be regarded as a critical
value at which the probability that the random loss W0 −W would take a
value strictly greater than the critical value is below the level of risk tolerance
α. However, as we have learned from Lemma 1, the above inequality would,
in general, be violated at x = VaR(α), that is,

FW (W0 −VaR (α)) = FW
¡
ζ−W (α)

¢
≥ α.

In fact, the inequality may hold true strictly (for some α) in the situation
when the random payoff W contains atoms. In this sense, one may say that
VaR(α) as a measure of downside risk is optimistic, since the probability
that the loss would not be less than the critical value VaR(α) could be
strictly greater than the level of risk tolerance α.

On the other hand, we may also argue that VaR(α) as a measure of down-
side risk is conservative. To illustrate this, we consider the circumstance
when the random payoff W contains an open nuclear O = (a, b) on which
no probability mass is assigned. That is, FW (x) ≡ FW (O) for all x ∈ O.
According to the definition of VaR, with a = inf {x : FW (x) ≥ FW (O)},
the value-at-risk at α = FW (O) is thus given by W0 − a. In addition, since
there is no probability mass assigned on O = (a, b), it is equally sensible to
take W0 − b or any value within [W0 − b,W0 − a] as the value-at-risk at the
tolerance level α = FW (O). Since the VaR is set to be at the upper bound
of the interval at the pre-specified level of risk tolerance, the VaR as a risk
measure is thus regarded as being conservative.

Further to the above observations, we may consider the following alter-
native measure of value-at-risk, denoted by VaR0, relatively less conserva-
tive than the original VaR(α). The VaR0 defined below would assignW0−b
rather thanW0−a as its critical value at the risk tolerance level α = FW (O).

Definition 3 For all random payoffs W with initial investment W0, we
define the optimistic VaR for W , denoted by VaR0 (α), to be the critical
value at which the probability that the loss would exceed the critical value is
not greater than α, that is, for all α ∈ (0, 1],

VaR0 (α)
∆
= inf {x : FW (W0 − x) ≤ α} . (12)

The VaR0 so-defined obviously satisfies the desirable property that

FW (W0 − x) ≤ α for all x > VaR0 (α) .

Similar to VaR, we may express the VaR0 (α) by making use of the right-
continuously inverse function ζ+W (·):

VaR0 (α) =W0 − ζ+W (α) , ∀α ∈ (0, 1]. (13)
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The statement made in Lemma 2-a) is equivalent to VaR0 (α) ≤VaR(α) , ∀α ∈
(0, 1]. So, VaR0 (α) as a risk measure is relatively less conservative than
VaR(α), since it assigns a lower level of VaR at all levels of risk tolerance.
For the random payoffs with continuum supports and atomless, it is obvious
that the two risk measures VaR and VaR0 provide the same assessment of
the downside risk. However, the two risk measures may differ from each
other for random payoffs with discrete supports.

To illustrate such a difference, we consider a random variable W with fi-
nite or countable infinite support. We have: ζ+W (Cn) = xn+1 and VaR0 (Cn) =
W0−xn+1, which are in contrast to ζ−W (Cn) = xn and VaR(Cn) =W0−xn.
Moreover, the two risk measures coincide with each other on (Cn, Cn+1),
that is, VaR0 (α) =VaR(α) = W0 − xn+1, ∀α ∈ (Cn, Cn+1). Thus, we find
that VaR0 sets its critical value at Cn to be W0 − xn+1, which is strictly
below W0− xn. This assessment of risk offered by VaR0 is thus regarded as
over-optimistic.

By virtue of the above observations, we are in favor of using the VaR
rather than VaR0 as the critical value at all arbitrary levels of risk tolerance.
As a result, we decide not to pursue further the properties for the corre-
sponding conditional-VaR0 and c*-VaR0 resulting from VaR0, even though
much of the mathematical properties for these risk measures could be readily
established with the help of Lemma 2.

4.2 Gambler’s Ruin and α∗-VaRs

We introduce the following thought experiment known as a gambler’s ruin
problem:

Example 1 (gambler’s ruin) A gambler has a stake of $5, 000 to bet in
two mutually exclusive risk prospects X and Y . X is a one-shot fair gamble
with equal probability to lose the stake or to double the bet, that is,

X = {0.5, $0; 0.5, $10, 000} .

Y is also a fair gamble, but its payoff follows an exponential distribution
with its p.d.f. given by9

fY (x) =
1

5000
e−

x
5000 , x ≥ 0.

9Here, the realization of Y could be regarded as an accumulated outcome of repeatedly
betting in infinitesemal fair gambles. The betting stops when the gambler has lost all of
his/her initial stake of $5000.
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The question is: Which risk prospect would the gambler take? Most people
would bet on Y rather than X.

That people would bet Y over X does not come as a surprise. X is
regarded as riskier than Y . By betting on X, the gambler faces a 50% prob-
ability of losing all his/her original stake of $5, 000! If instead of investing
in Y , the gambler could end up with a final stake anywhere on [0,+∞) with
an expected final stake of $5000. In other words, Y is regarded as less risky
because there is zero probability of losing one’s initial stake, yet the gambler
has a chance to obtain an arbitrary higher final stake. This outcome does
not support VaR and c*-VaR as good risk measures.

To illustrate the above observation, we plot the following equations,
which summarize the VaRs and c*-VaRs associated with X and Y . In
addition, we find that X and Y do not dominate each other according to
the first-order or the second-order stochastic dominance.

VaRX (α) = {$5000, α ∈ (0.0.5];−$5000, α ∈ (0.5, 1]} ;

c*-VaRX (α) =

½
$5000, α ∈ (0.0.5]; $5000× 1− α

α
, α ∈ (0.5, 1]

¾
;

VaRY (α) = $5000× [1 + ln (1− α)] , α ∈ (0, 1]; and

c*-VaRY (α) = −$5000× (1− α) ln (1− α)

α
, α ∈ (0, 1].

Figure 1: Plots of the c.d.f.s of X and Y , their cumulative integrals and
the corresponding VaR and c*-VaR.

figure=example3.eps,height=8cm,width=14cm
Note: CCDF stands for cumulative integral of c.d.f.

Nevertheless, it is interesting to observe that the decision to choose Y
over X is consistent with the following α∗-VaRs criterion:

Definition 4 For all random payoffs X and Y that involve the same initial
investment, we say that X is riskier than Y according to α∗-VaR (resp.,
α∗-C-VaR and α∗-c*-VaR ) if

VaRX (α) (resp., C-VaRX (α) and c*-VaRX (α))

≥ VaRY (α) (resp., C-VaRY (α) and c*-VaRY (α))

for all α ∈ (0, α∗].

If we set α∗ = 0.5 and 1 − e−1, respectively, for the VaR and c*-VaR,
then X would be regarded as being riskier than Y because
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• VaRX (α) >VaRY (α) , 0 < α < 0.5;

• c*-VaRX (α) > c*-VaRY (α) for all 0 < α < 1− e−1.

On the other hand, it is easy to verify that

• VaRX (α) <VaRY (α) for α ∈
¡
0.5, 1− e−2

¢
and VaRX (α) >VaRY (α)

for α ∈
¡
1− e−2, 1

¤
;

• c*-VaRX (α) < c*-VaRY (α) for α > 1− e−1.

Gamblers’ preferences for Y over X support the hypothesis that people
are largely concerned that the VaR or c*-VaR for α not exceed a certain
psychological limit α∗ of risk tolerance.10 So, it is possible to assess the risk
of the risky prospects X and Y even when the corresponding random payoffs
do not dominate each other by the first-order or second-order stochastic
dominance. We may put this alternatively in terms of VaRs. The outcome of
the thought experiment suggests that the α∗-VaRs could constitute sensible
measures of the downside risk in comparison with the original VaRs. The
latter corresponds to α∗ = 1.

Indeed, it seems to be a common practice in risk management that in
assessing financial risk, people are not concerned about downside risk at all
levels of risk tolerance but only that α not exceed the pre-specified psycho-
logical limit, say, α∗ < 1. The maximum level of risk tolerance α∗ may be set
at 5%, 10%, or higher, depending on the degree of the investor’s psycholog-
ical risk tolerance. Furthermore, different investors may set different levels
of maximum risk tolerance. Presumably, the more cautious the investor, the
higher the maximum level of risk tolerance α∗ would be set.11

Taking for granted the α∗-VaRs as risk measures, we may dig further into
the implications on the expected utility as a normalized collective behavior
assumption for rational investors. The following general remarks are in order
here:
10To rationalize a gambler’s choices, the risk tolerance limit α∗ would be set not to

exceed 0.5 and 1− e−1 for the VaR and c*-VaR, respectively.
11Precisely, investor A is said to be more cautious than investor B if B takes all risk

prospects Y that are taken by A, but the converse is not true. Suppose A and B assess
risk according to the α∗-VaRs with their limit of risk tolerance respectively given by α∗A
and α∗B . Then, by definition, A is more cautious than B if and only if α

∗
A > α∗B, keeping

in mind that

VaRX (α) ≥ VaRY (α) , ∀α ∈ (0, α∗A]
⇒ VaRX (α) ≥ VaRY (α) , ∀α ∈ (0, α∗B].
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a) Similar to VaRs, the α∗-VaRs as risk measures constitute partial orders
in the space of random payoffs. These are weaker than the original
VaRs because [X is riskier than Y according to VaRs] implies [X is
riskier than Y according to α∗-VaRs]; but the converse is, in general,
not true. Consequently, the α∗-VaRs as an investment criterion are no
longer equivalent to the corresponding SDs’ criterion (unless α∗ = 1).

b) By virtue of the breakdown of the equivalence between α∗-VaRs and SDs,
as investment criteria, the α∗-VaRs no longer correspond to investment
decisions/portfolio choices made by expected-utility investors. For in-
stance, suppose all investors are expected-utility maximizers with well-
diversified preferences, and suppose X is assessed to be riskier than Y
according to the α∗-VaRs, we may ask: would all investors choose Y
rather than X? The answer is no unless α∗ = 1 for which Y dominates
X in the sense of SD. So, generally speaking, even if X is assessed to
be riskier than Y according to α∗-VaRs, some of the expected-utility
investors would still choose X over Y .

c) Further to b), suppose all investors use α∗-VaRs to assess the risk ex-
posure of their investments, and suppose their behavior and invest-
ment decisions conform to the α∗-VaRs criterion (α∗ < 1), that is,
investors never take a project assessed to be riskier according to the
α∗-VaR criterion. We may ask: would such behavior conform to the ex-
pected utility axiomatized by von Neumann and Morgenstern (1944)?
The answer to this, in theory, is not affirmative. If all investors are
expected-utility investors, and if the investors’ risk preferences are
well-diversified, they may not act unanimously as prescribed by the
α∗-VaRs criterion.

Bearing in mind the above observations on α∗-VaRs and choice behavior
of expected-utility investors, one may wish to conduct experimental studies
to gather further evidence for or against the expected utility as a normalized
collective behavior assumption for rationality. This is, however, not the
objective of this paper.

4.3 MPS and c*-VaR

For the second-order stochastic dominance, which is associated with c*-VaR
as a risk measure, we consider the following mean-preserving-spread (MPS)
and strong-MPS dominance relationships and the resulting risk measures.
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Definition 5 Given two random payoffs X and Y , Y is said to be a mean-
preserving-spread (MPS) of X if Y = X + ε such that E [ε] = 0 and
Cov(X, ε) = 0. In addition, Y is said to be a strong-MPS of X if Y = X+ε
such that E [ε | X] = 0.

Under either of the above definitions, random payoff Y , as a MPS (or
strong-MPS) of X, could be regarded as being riskier than X in the sense
that Y is more volatile than X. The MPS and strong-MPS dominance
relationships are, however, not equivalent to each other becauseE [ε | X] = 0
implies, but is not always implied by, E [ε] = 0 and Cov(X, ε) = 0. In other
words, strong-MPS implies MPS, but the converse is, however, not always

true. We write X dist
= Y whenever X and Y are identically distributed.

The following relationship between the strong-MPS and the second-order
stochastic dominance is well known (see, for example, Huang and Litzen-
berger 1988, Chapter 2.8) and was originally proved by Rothschild and
Stiglitz (1970):

Y
dist
= X + ε,E [ε | X] = 0⇔ X

SSD
º Y. (14)

The MPS, as a partial order, is weaker than the strong-MPS. Accord-
ingly, the resulting risk measure associated with MPS would, in general, no
longer be represented by the c*-VaR. These findings enable us to establish
the following links among MPS, strong-MPS, and the c*-VaR as follows:

Theorem 5 For all random payoffs X and Y with E [X] = E [Y ], it must
hold true that

(i) Y
dist
= X + ε,E [ε | X] = 0⇔ c*-VaRX (α) ≤ c*-VaRY (α) , ∀α ∈ (0, 1];

(ii) c*-VaRX (α) ≤ c*-VaRY (α) , ∀α ∈ (0, 1]⇒ Y
dist
= X+ε with Cov(X, ε) =

0.

The following is an illustrative example to show the violation of the
converse of (ii), that is, even if Y is a MPS of X, there exists α ∈ (0, 1) such
that X has a higher c*-VaR than Y at α.

Example 2 Let Ω = {(i, j) : i ∈ {−1, 0, 1} , j ∈ {−1, 0, 1}} be the state space
with equal mass on each of the 9 elements (i.e., pij = 1

9 , ∀ (i, j) ∈ Ω ). Let
�1 and �2 be two random seed variables on Ω that are respectively defined by
setting �1 (i, j) = i and �2 (i, j) = j for all (i, j) ∈ Ω. Consider the following
random payoffs Y = 250 + 200�2 and X = Y + 180θ�1 − 110θ�2, where θ =
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1.1×2
1.12+1.82

≈ 0.494. We have E [X] = E [Y ] = 250 and Cov(Y −X,X) = 0,
that is, Y is a mean-preserving-spread of X.

Let W0 = 200 be the initial investment for the risk prospects. We can
compute the c*-VaR for each of the two random payoffs at risk tolerance
level α = i/9, i = 1, 2, · · · , 9 respectively. We obtain:

α 1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 1

c*-VaRY 150 150 150 100 70 50 7.14 −25 −50
c*-VaRX 184.61 140.12 106.42 81.4 55.12 28.16 4.28 −88.57 −110.36

From this example, we find that c*-VaRX (α) > c*-VaRY (α) at α = 1/9
and c*-VaRX (α) < c*-VaRY (α) for all α = i/9, i = 2, · · · , 9. So, even
though Y is a mean-preserving-spread of X, X has a higher c*-VaR than Y
at α = 1/9.

Alternatively, we may examine the rank between X and Y by an expected-
utility investor. Let u (x) = ln (x− 15) be the utility function. We can
readily compute the expected utilities for X and Y respectively:

E [u (X)] ≈ 4.75 < E [u (Y )] ≈ 5.03.

With either of the above two observations, we conclude that Y being a
MPS of X does not imply that X dominates Y according to the SSD. Or in
terms of MPS and strong-MPS, we have: “Y is a MPS of X” but it does
not imply that “Y is identical in distribution to some strong-MPS of X.”

An investor is said to display MPS-risk-aversion if X is preferred to
Y whenever Y is identical in distribution to a MPS of X. For the above
example, all MPS risk-averse investors would prefer X to Y because Y could
be expressed as a MPS of X. So, MPS-risk-averse investors would assess risk
differently than those expected-utility investors. From the above example,
we also see the difference between the MPS and the α∗-VaR criterion: X
has a higher c*-VaR than Y for all α ≤ α∗ = 1/9, while all MPS-risk-averse
investors would consider X to be less risky than Y .

Choices made by MPS-risk-averse investors are studied by Boyle and
Ma (2004) within the standard context of Markowitz (1959). The following
observations are documented there:

(a) All MPS-risk-averse investors would optimally choose to invest along
Markowitz’s efficient frontier;

(b) All portfolios inside the efficient frontier must be expressed as the MPS
of some efficient portfolios (see Boyle and Ma, 2004, Proposition 5).

30



These results involve no distributional assumptions on the random pay-
offs and hold true in the general context with a finite number of risky
prospects. It also holds true for MPS-risk-averse investors whose prefer-
ences, as partial order, may not admit utility representations, and may thus
not belong to any mean-variance utility class.

Observations (a) and (b) have strong implications for how MPS-risk-
averse investors would assess risk in the context of portfolio choices. Since
the efficient frontier is understood to be obtained by minimizing the portfolio
variances at all arbitrary given levels of expected payoffs, and since efficient
portfolios at arbitrary expected payoffs are preferred by all MPS-risk-averse
investors, the standard deviation as an objective risk measure could be re-
garded as being supported by choices made by the class of MPS-risk-averse
rational investors.

Having said this, we must emphasize again that we do not refer to the
pair-wise comparison between the risk prospects. Instead, we are talking
about an optimal portfolio holding a finite number of risky prospects. In
other words, even if pair-wise comparisons between two risky prospects are
not always possible under the MPS criterion, the optimal portfolio held by
MPS-risk-averse investors must achieve the minimum ‘risk’ that is measured
by the standard deviation, among all other trading strategies achieving the
same level of expected payoff as the optimal portfolio.

Also, the last observation on the efficient portfolios being favored by
all MPS-risk-averse investors in general is not valid for the class of risk-
averse expected-utility investors. Precisely speaking, portfolios favored by
all risk-averse expected-utility investors, in general, may not exist. If such a
portfolio exists, it must be identical in distribution with some MPS of those
other portfolios with the same level of expected payoff and is thus located
on the efficient frontier. But not all efficient portfolios would be favored
by risk-averse expected-utility investors as seen from the above example.
Thus, it is relatively easier to reach an agreement on risk assessment among
MPS-risk-averse investors than among risk-averse expected-utility investors.

To sum up, the MPS and strong-MPS dominance relations correspond
to different risk measures. The strong-MPS as a partial order is known to
be equivalent to the SSD, which, in turn, points to c*-VaR as the resulting
risk measure. The MPS as a weaker partial order than the strong-MPS,
on the other hand, is found to be linked to some degree to the standard
deviation. In the special case when payoffs of all risk prospects are jointly
normal-distributed, the two dominance relations, namely, MPS and strong-
MPS, are equivalent to each other. As a result, both MPS and strong-MPS
would point to the standard deviation as the measure of risk. Indeed, it is
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well-known that under the joint normal distributional assumption, c*-VaR
as a risk measure is equivalent to the standard deviation.

5 Concluding Remarks

This paper provides a decision-theoretical foundation for VaR, conditional-
VaR, and a modified conditional VaR as risk measures. The relevance of
these risk measures is found to be closely connected to unanimous choices
made by the expected-utility investors. In fact, such relevance could be
established for some general non-expected utility functions. These include
the betweenness utility functions of Chew (1983) and Dekel (1986), and the
rank-dependent anticipated utility functions of Quiggin (1982) and Yaari
(1984, 1987). This largely follows the observation on the equivalence between
SSD and choices made by those expected or non-expected utility investors.

The limitations of VaRs as risk measures are well recognized. First,
in contrast to the standard deviation as a risk measure, VaRs could only
provide partial and incomplete assessments of risk. In other words, with
VaRs one cannot carry out pair-wise risk comparisons for two arbitrary
risky prospects. Second, even though VaRs are found to be relevant for
investors who behave according to the prescribed expected or non-expected
utility functions, VaRs as risk measures would make sense for investors who
do not behave as such. For example, if investors use α∗-VaRs, say, for
α∗ = 5%, rather than VaRs to assess risk, or if investors assess risk using
the MPS criterion rather than the strong-MPS criterion, then VaRs would
no longer be regarded as ideal objective risk measures, at least from the
decision-theoretical point of view.

We believe that portfolio selection among all possible combinations of
various risky prospects, which is more complicated than the pair-wise com-
parison of risky prospects, constitutes a more relevant context for studying
risk management, in particular risk measurement. A general theory of risk
measurement in the context of portfolio choices is beyond the scope of this
paper. Nevertheless, it constitutes a future research initiative. To conclude,
while it is desirable to have an objective measure for assessing risk prospects,
such a measure, if it exists, would be controversial given the subjective na-
ture of risk assessment.
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Appendix 1. Left-continuous Inverse c.d.f.

The following summarizes the properties of the left-continuously inverse
c.d.f. function

Lemma 1 The left-continuously inverse function α → ζ−W (α) defined on
(0, 1] must be monotonically increasing such that

(a) FW
¡
ζ−W (α)

¢
≥ α, ∀α ∈ (0, 1];

(b) ζ−W (FW (x)) ≤ x, ∀x ∈ R s.t. FW (x) > 0; and

(c) FW (x) = inf
©
α ∈ (0, 1] : ζ−W (α) ≥ x

ª
for all x s.t. FW (x) > 0.

Proof. To see the monotonicity, let α ≥ α0 be located in (0, 1]. We have

{x : FW (x) ≥ α} ⊆
©
x : FW (x) ≥ α0

ª
.

This implies

ζ−W (α) = inf {x : FW (x) ≥ α} ≥ inf
©
x : FW (x) ≥ α0

ª
= ζ−W

¡
α0
¢

as desired.
To prove (a), for all arbitrary α ∈ (0, 1], we set x = ζ−W (α) for (3). By the

definition of ζ−W (·), we have FW
¡
ζ−W (α) + ε

¢
> α for all ε > 0 if α < 1, and

FW
¡
ζ−W (α) + ε

¢
= α for all ε > 0 if α = 1. Setting ε→ 0, by the right con-

tinuity of the c.d.f., we obtain FW
¡
ζ−W (α)

¢
= limε→0+ FW

¡
ζ−W (α) + ε

¢
≥ α

as desired.
To prove (b), for all arbitrary x ∈ R, let α∗ = FW (x) > 0. Since

x ∈ {y : FW (y) ≥ α∗}, we obtain

x ≥ ζ−W (α∗) = inf {y : FW (y) ≥ α∗} ;

that is, ζ−W (FW (x)) ≤ x.
To prove (c), for all arbitrary x ∈ R with α∗ = FW (x) ∈ (0, 1]. We need

to show that
α∗ = inf

©
α ∈ (0, 1] : ζ−W (α) ≥ x

ª
.

First, for all 0 ≤ α < α∗ = FW (x) < 1, by the monotonicity of ζ−W (·), we
have: ζ−W (α) ≤ ζ−W (α∗) ≤ x. This allows us to conclude that

inf
©
α ∈ (0, 1] : ζ−W (α) ≥ x

ª
≥ α∗. (15)

33



Similarly, for all 1 ≥ α > α∗, we have ζ−W (α) ≥ ζ−W (α∗). We can further
show that ζ−W (α) > x ≥ ζ−W (α∗) , ∀α > α∗. Suppose, to the contrary that,
x ≥ ζ−W (α) = inf {y : FW (y) ≥ α} . For all ε > 0, it must hold true that
FW (x+ ε) > α. Setting ε → 0, we obtain α∗ = limε→0+ FW (x+ ε) ≥ α
which contradicts α > α∗. The condition ζ−W (α) > x for all α > α∗ suggests
that

inf
©
α ∈ (0, 1] : ζ−W (α) ≥ x

ª
≤ α∗. (16)

Combining inequalities (15) and (16), we obtain

α∗ = inf
©
α ∈ (0, 1] : ζ−W (α) ≥ x

ª
.

This concludes the proof.

Statement (c) in Lemma 1 is an inversion formula for the c.d.f. from the
left-continuously inverse function. For the special case in which the random
variable W has continuum support and is atomless, its c.d.f. FW (·), which
is strictly monotonically increasing on the support of W has a well-defined
inverse function ζ−W (·) on (0, 1] so that FW

¡
ζ−W (α)

¢
= α for all α ∈ (0, 1]

and ζ−W (FW (x)) = x for all x in the support of W .
In another extreme, we consider a random variable W with finite or

countable infinite support, say W = {p1,x1; · · · ; pn, xn; · · · } with support
x1 < x2 < · · · . In this case, both the c.d.f. FW (·) and the left-continuously
inverse function ζ−W (·) are piecewise step functions. In particular, if we let
Cn =

Pn
i=1 pi with C0 = 0, we have: ζ−W (α) = xn+1, for all n = 0, 1, · · · ,

and for all α ∈ (Cn, Cn+1]. Thus, the function ζ−W (·) is monotonically
increasing and left-continuous. Moreover, for all n = 1, 2, · · · , we have
ζ−W (FW (x)) = xn ≤ x, ∀x ∈ [xn, xn+1) with ζ−W (FW (x)) < x unless x =
xn; and FW

¡
ζ−W (α)

¢
= Cn+1 ≥ α, ∀α ∈ (Cn, Cn+1], with FW

¡
ζ−W (α)

¢
> α

for α < Cn+1.

Appendix 2. Right-continuous Inverse c.d.f.

The lemma below summarizes some joint properties of the left- and the
right-continuously inverse of the c.d.f.:

Lemma 2 For all random payoffs W , the right-continuously inverse func-
tion ζ+W (α) must be increasing; moreover, it must hold true that

a) ζ+W (α) ≥ ζ−W (α) for all α ∈ (0, 1];

b) FW
¡
ζ+W (α)

¢
≥ FW

¡
ζ−W (α)

¢
≥ α for all α ∈ (0, 1];
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c) ζ+W (FW (x)) ≥ x ≥ ζ−W (FW (x)) for all x such that FW (x) > 0; and

d) FW (x) = sup
©
α ∈ (0, 1] : ζ+W (α) ≥ x

ª
for all x such that FW (x) > 0.

Proof. The monotonicity follows, obviously, by the definition of the right-
continuously inverse function.

To prove a), with ζ+W (α) = sup {x : FW (x) ≤ α}, we have, ζ+W (α)+ ε ∈
{x : FW (x) > α} for all ε > 0.This, in turn, implies

ζ+W (α) + ε ≥ inf {x : FW (x) ≥ α} = ζ−W (α) .

Setting ε→ 0+ we obtain ζ+W (α) ≥ ζ−W (α).
Statement b) follows by utilizing the monotonicity of the c.d.f. FW (·)

and Lemma 1.
Again, with Lemma 1, we only need to prove the validity of the first

inequality in c): For all arbitrary x s.t. FW (x) > 0, we set α∗ = FW (x).
Since x ∈ {y : FW (y) ≤ α∗}, we have x ≤ sup {y : FW (y) ≤ α∗}, that is,
ζ+W (FW (x)) ≥ x as desired.

To prove d), for all arbitrary x ∈ R s.t. α∗ = FW (x) ∈ (0, 1]. For
α ∈ [α∗, 1], by the monotonicity of ζ+W (·), together with Statement c) of
this proposition, we have ζ+W (α) ≥ ζ+W (α∗) ≥ x. This implies

sup
©
α ∈ (0, 1] : ζ+W (α) ≥ x

ª
≤ α∗. (17)

On the other hand, ζ+W (·) ≥ ζ−W (·) implies©
α ∈ (0, 1] : ζ+W (α) ≥ x

ª
⊇
©
α ∈ (0, 1] : ζ−W (α) ≥ x

ª
.

So, it must hold true that

sup
©
α ∈ (0, 1] : ζ+W (α) ≥ x

ª
≥ inf

©
α ∈ (0, 1] : ζ−W (α) ≥ x

ª
.

Since, by Lemma 1-c), α∗ = FW (x) = inf
©
α ∈ (0, 1] : ζ−W (α) ≥ x

ª
, we

obtain
sup

©
α ∈ (0, 1] : ζ+W (α) ≥ x

ª
≥ α∗ (18)

Combining inequalities (17) and (18) yields the desired inversion formula for
the c.d.f. FW (·) from the right continuous inverse function ζ+W (·).
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